

An Alternative to Helium Leak Checking

Kieran Massey, Gencoa Ltd

AVS-69 Session: VT-TuA: Novel Vacuum Instrumentation 7th November 2023 5:00 – 5:20 PM

Introduction

- Motivation for an alternative to helium leak checking
- Remote plasma emission monitoring (RPEM)
- RPEM for leak checking
- Detection gas
- Ar leak detection
- Other uses
- Conclusions

- "Helium Shortage 4.0"
 - Lack of supply driven by political pressures and production problems
 - Difficult to procure Helium even with long running gas contracts unless in key industries
- Finite resource
 - Once released into atmosphere lost forever
 - Use should be prioritised for critical applications
- Technological
 - Mass spectrometer based mobile leak checkers
 - Costly to produce
 - Expensive to maintain
 - Detection limit down to 1E-12 mbar l/s often unnecessary
- Large component testing (e.g. fuel tanks) where minimising use of helium is advantageous typically in accumulation testing

Existing techniques

He vacuum												
Ar RPEM vacuum												
He sniffing												
Hydrogen (5%) sniffing												
He accumulation												
Hydrogen (5%) accumulation												
Pressure decay testing												
Leak rate mbar I/s	10 ⁰	10-1	10-2	10 ⁻³	10-4	10 ⁻⁵	10 ⁻⁶	10-7	10	8	10 ⁻⁹	10 ⁻¹⁰

Targeting helium-based technologies

٠

- Standalone / portable leak checker for helium vacuum initially
- Leak rates <1E-7 to 1E-3 mbar l/s
- Accumulation / sniffing applications

RPEM for He leak detection

- Possible to localise air leaks by monitoring He emission
- Not a complete replacement for a dedicated He leak detector
- Leak rates are not directly quantifiable

Why not use helium?

- He low light emitter
- Easily supressed by larger molecules

10

9

Detection gas

CO2:

- Low presence in atmosphere (~0.04%)
- Complex interactions in plasma
- Organic species dissociating in plasma could make calibration challenging

CO2 Leak

Difference

Wavelength (nm)

Detection gas

8

Argon:

- Higher presence in atmosphere (~1%)
- Inert
- Defined peak at 750nm

Vacuum Setup

- Conventional leak checkers rely on back-streaming
- Opportunity for a lower cost / more robust unit based on RPEM technology

RPEM leak checker pumping differences?

- Can start measuring directly at higher pressures
- Reduced sensitivity below certain pressure; reduce pumping if vacuum <~1E-4 mbar, opposite to He LC which have greater sensitivity at higher vacuum

Vacuum Setup

- Sensor pressure critical in determining signal level
- Optimum pressure for signal strength; requires crossover to low conductance pumping
- Required parameters:
 - Low conductance path orifice size
 - Pressure to switch to low conductance mode

Ar Leak Detection

Fixed leak at 3.8E-6 mbar l/s 1000ms integration, 1 scan, 50uA emission Integrate 745-755nm

Pressure response:

- Sensor pressure increased by throttling TMP
- Increase in signal strength by 50% by working at optimum pressure
- Signal falls off when Argon background increases with high throttling

Ar Leak Detection

Pulsed leak response:

- 2E-7 mbar l/s detectable without throttling
- Response time < 5secs
- Opportunity to improve detection signal strength

GENCOA

Ar Leak Detection

- Required Calibration curves:
 - Pressure vs signal (at fixed leaks / pulse length / current)
 - Signal vs leak (at fixed pressures / pulse length / current)
 - Steady state (i.e. long pulse) signal vs leak
 - Understanding to date:
 - Calibration will require pressure correction
 - Good fit to pressure in range tested
 - Assume operation at fixed current
- He equivalent Ar leak rate will be a function of integration time (I), signal (S), pressure (P) and potentially partial pressure (PP)

LR(He equivalent mbar l/s) = fn(I,S,P,PP?)

Other uses for RPEM

Vacuum process control / quality monitoring

GENCOA

15

AI based leak detection

- Uses partial pressure data from RPEM spectrum
- Could be incorporated into RPEM leak checker advantage of a technique that detects more than a single species
- Chamber determined leak-tight in less than 10 minutes pumping time
- Leak checking algorithm successful below 3E-2
 mbar

16

Conclusions

- RPEM used to detect He equivalent leaks down to low E-7 mbar l/s
- Heavier gas leak detection requires different pumping arrangement to regular mass spec based systems
- Higher pressure of RPEM works well in such systems
- Calibration more complex but possible by linking pressure and water vapour data
- Offers additional spectral data compared to single species mass spectrometry

Project No. 10055251

Innovate Leak detection by remote plasma optical emission spectroscopy

- Thank you for your attention
- Please visit us at the exhibition Booth 704