

In-situ gas monitoring as an industrial tool for rapid troubleshooting

Joe Brindley, Tommaso Sgrilli, Benoit Daniel, Victor Bellido-Gonzalez, Dermot Monaghan Gencoa Ltd, UK

www.gencoa.com

Presentation outline

- Why in-situ gas monitoring current state of the industry
- Description of Remote Plasma Emission Monitoring technique
- Qualitative identification of process problems
 - Air leaks
 - Water leaks
 - Contaminated process gas
- Using RPEM as a quantitative monitoring tool

The current state of process monitoring

Some form of pressure monitoring > Almost everyone

Pressure monitoring in each zone > Most users

Access to a He leak detector > Most users

Immediate access to a He leak detector > Some users

Access to a QMS (RGA) > Some users

RGA permanently on the tool > Very few users

In-situ gas monitoring Why and why not?

- Take pre-emptive action proactive not reactive!
- Identify problems early before they affect the substrate
- Predict if a problem is likely to occur
- Schedule maintenance just in time

Easy to break

Complex operation

Remote Plasma Emission Spectroscopy (RPEM)

 Original concept used by Mann in 1981 leak detection Spectrum analysis gives species composition

Remote Plasma Emission Spectroscopy

 Fast feedback control of the current allows for a stable plasma to be generated from 1E⁻⁶ mbar to 0.5 mbar

RPEM / RGA Comparison

Good agreement between QMS results and RPEM for many gases

QMS RGA

RPEM (Optix)

Detection of water leaks

- OH and H emissions indicate water vapor
- Clear increase seen when dynamic seal is moving

Detecting process gas contamination

- Ar process gas line contaminated with air
- MFC feedback would have shown no problem
- No system leak to detect in situ gas monitoring only way to see this

He leak detection with RPEM

• Differential spectrum produced when spraying He around an air leak

He leak detection with RPEM

- Possible to localise air leaks by monitoring He emission
- Not a complete replacement for a dedicated He leak detector
- Leak rates are not directly quantifiable

The RPEM quantification problem

- Gas readings are interactive (relative to each other)
- Results are more like **ratios** of gases

The RPEM quantification problem (and solution)

The RPEM quantification problem (and solution)

The RPEM quantification problem (and solution)

- Quantifiable gas partial pressure readings are possible using RPEM
- Data can be produced that is a close match with a QMS RGA

- AlOx evaportation onto 12µm PET
- Webwidth: 2450mm
- Bobst K5000 R&D metalizer

- Two process zones
- Plasma pre-treatment
- Al evaporation
- Evaporation zone plasma

- Boats heating
- Wire feeding
- Drum rotation
- Plasma pre-treat ignited
- Evaporation plasma ignited

- CO₂ outgassing from the evaporation boats
- Small increase in water vapor due to heating

- Boats heating
- Wire feeding
- Drum rotation

- Boats heating
- Wire feeding
- Drum rotation
- Plasma pre-treat ignited
- Evaporation plasma ignited

- **Case study R2R process mapping**
- Gettering of OH and O from evaporated AI
- Outgassing of CO organic contamination on wire?

- Boats heating
- Wire feeding
- Drum rotation
- Plasma pre-treat ignited
- Evaporation plasma ignited

- **Boats heating**
- Wire feeding
- Drum rotation
- Plasma pre-treat ignited
- Evaporation plasma ignited

N₂ is being "dragged" in from the low vacuum ٠ zone of the system

- **Boats heating**
- Wire feeding
- Drum rotation

- Boats heating
- Wire feeding
- Drum rotation
- Plasma pre-treat ignited
- Evaporation plasma ignited

- Effect of the pre-treat plasma in the low vac. zone
- Reaction of web ligands with O forming CO / CO₂

- Boats heating
- Wire feeding
- Drum rotation
- Plasma pre-treat ignited
- Evaporation plasma ignited

Boats heating

Wire feeding

- Drum rotation
- Plasma pre-treat ignited

- Formation of CO and CO₂
- Effect of the evap. plasma on the web can be monitored

- Boats heating
- Wire feeding
- Drum rotation
- Plasma pre-treat ignited

 Common industrial vacuum processing problems can be identified early, before the consequences escalate.

 Examples include water leaks, air leaks, outgassing, gas contaminants

• Gas concentrations can be quantified when using RPEM

• Processes can be "fingerprinted" – for proactive problem solving

Thank you for your attention!

Please visit us at Booth 720

