

The deposition of hard, transparent, wear resistant, DLC coatings using magnetron sputtering

P.McCarthy*, T. Sgrilli, A. Azzopardi, V. Bellido-Gonzalez, Ivan Fernandez Martinez, Jose Antonio Santiago Varela, D. Monaghan

Transparent Carbon coating development with Nano4Energy

A series of patents have been issued (since 2017) for hard Carbon deposition on glass and long process stability

nano4energy

Nano4ENERGY

Outline

1) Introduction to DLC

- What is DLC
- Magnetron sputtering for DLC
- Hydrogen and ion bombardment

2) Gencoa's GRS-C Rotatable Magnetron Vacuum

<u>System</u>

- Optix remote plasma sensing of H
- Active Anode enhancing ion energy
- Target voltage stability with O2 cycling

3) Gencoa DLC on glass

- Optical properties
- Tribo. performance under low loads

□ <u>4) Gencoa DLC and Hard Transparent</u>

<u>Underlayer</u>

www.gencoa.com

- Tribo. performance under high loads
- Hardness and scratch resistance

I - DLC Production Methods

Diamond Like Carbon (DLC) has wide range of applications due to favourable chemical and physical properties, with different approaches used for the fabrication of DLC thin films

Chemical vapour deposition

• Plasma enhanced

D Physical vapour deposition

• Magnetron Sputtering (MS)

Gencoa specialise in a form of **MS** to produce hard transparent DLC

www.gencoa.com

- Dual Rotatable Electrode (GRS-C)
- AC MF, Square Wave, HiPIMS

I - DLC Production: Magnetron Sputtering

www.gencoa.com

The unique properties of DLC layers are largely governed by two parameters:

- 1) Its bonding configuration (the sp³/sp² ratio)
- 2) The hydrogen content within the DLC layer.

To attain hard, transparent DLC coatings (high sp3 and sufficient H) we can approach the issue in two ways

nano4ener

I - DLC Production: Magnetron Sputtering

Nano4energy

✓ Manipulate the plasma surface interaction

- Boost energy of sputter gas (Ar, O2)
- \checkmark Assess H content in the DLC layer
 - Vacuum condition

II - Gencoa GRS-C Rotatable Magnetron System

1) How we monitor H content

Optix remote plasma sensor

2) How we maximise ion energy W/O bias

Gencoa Active Anode

II - DLC Production: Optix time resolved H tracking

Gencoa's remote plasma sensor, *Optix*, allows time resolved partial pressure measurements to be made

II - DLC Production: Optix time resolved H tracking

Gencoa's remote plasma sensor, *Optix*, allows time resolved partial pressure measurements to be made

II - DLC Production: Ion Energy Enhancing (Active Anode)

www.gencoa.com

Red & blue = Dual target voltage Green = Probe voltage

Floating voltage probe shows increased ion current to substrate with active anode and gas injection

Nano4ENERGY

II - DLC Production: Stability with O2 Cycling

70000

II - DLC Production: Stability with O2 Cycling

O2 Flow (sccm)

III - DLC Properties: Optical

1. Glass appearance

2. Transmission in visible wavelengths

www.gencoa.com

1. Reciprocating Abrasion Test

2. Glass Appearance

Abrasion Test Parameter 0.5kg, WC/Co ball 6 mm, 20 per min, 200 passes

5/19/2022

GENCO/

III - DLC Properties : Abrasion Resistance and Scratch Test

www.gencoa.com

Constant load scratch test Diamond conical tip

- 300 mN
- 10nm DLC

□ Critical scratch load resistance under low loads for

DLC relative to uncoated boro. glass

□ 3x abrasion resistance of 5-10 nm DLC relative to uncoated glass

□ Lower H content produces more abrasion resistant DLC

III - DLC Properties: O2 feedback control

Raman Spectroscopy

IV- Drawbacks to DLC : Adhesion

www.gencoa.com

One of the main drawbacks of DLC coatings is their high intrinsic compressive stress. It can reach tens of GPa which alters their adhesion and limits the thickness of coatings, resulting in the **peeling off** of the coating.

Solutions

Doping DLC with metals, Ni or Si (loss of

transmission)

- Bias-graded deposition (Glass can't bias!)
- Deposit an intermediate layer between
 the substrate and the DLC film in order to
 increase the adherence and reduce the
 intrinsic stress in the interface
 DLC/substrate.

Nano4energy

IV- Drawbacks to DLC : Hardness with Depth

Hardness vs depth test

- Hardness is only maintained in first nm of coating
- Hardness is key to preventing deformation
- Need intermediate layer between DLC and glass

IV- DLC + Interlayer: Maintaining Hardness

www.gencoa.com

(1) Price, J.J et al, Nanoindentation Hardness and Practical Scratch Resistance in Mechanically Tunable Anti-Reflection Coatings. *Coatings* **2021**, *11*, 213

- Data taken from (1) Measured scratch depths of micro-ductile scratches from field study of consumer electronics devices with chemically strengthened glass covers
- □ Majority of observed scratch depths are in 100-500 nm depth range

IV- DLC + Interlayer: Maintaining Hardness

Thinner interlayers haver **lower peak hardness** and **suppress** hardness at deeper depths

A **thick** transition layer allows "true" hardness of film to be achieved

www.gencoa.com

IV- DLC + Thicker Interlayer: Transmission

www.gencoa.com

• Transmission r.t.g – 93% at 550 nm

IV- DLC + Thinner Interlayer: Hardness

www.gencoa.com

Hardness vs Contact Depth

 ✓ Hardness of DLC with AlOx under layer superior relative to just thin (5-10 nm) DLC coating -

approaching Mohs 8 (~15GPa)

- □ Time resolved H monitoring allows H content of vacuum system DLC to be observed during DLC coating fast, indirect measure of H in layer
- □ Active anode gives increased ion energy bombardment at substrate surface without electrical substrate bias
- □ **3x abrasion resistance of DLC relative to borosilicate glass** produced with rotatable system, H monitoring and active anode
- □ O2 presence in process, important to lower sp2/sp3 ratio and eliminate target voltage variation
- Transition layer vital to maintain hardness and reduce deformation improving scratch resistance under high loads

Future - Optimising transition layer thickness and adhesion of AlOx-DLC needed to reach > Mohs 8

Thank you for your attention!

Dr. Patrick McCarthy

patrick.mccarthy@gencoa.com

